Surface Based Wireless Power Transmission and Bidirectional Communication for Autonomous Robot Swarms

Travis Deyle
Department of Electrical and Computer Engineering
Georgia Institute of Technology

Matt Reynolds
Department of Electrical and Computer Engineering
Duke University

ICRA 2008
Overview

• The Swarm Power Problem
• Related Power Distribution Approaches
• Other Wireless Power Systems
• Proposed Power Surface Design
• Proposed Power Surface Characterization
• Conclusions
The Problem
Powering a Swarm of Robots

• Different activity levels = different power consumption
• Primary cell batteries are environmentally unfriendly
• How to maintain rechargeable batteries?

Solution: Get rid of batteries. Provide continuous wireless power to the swarm from its operating surface.

Image Credit: Axelrod, Georgia Tech
Image Credit: Caprari, EPFL Switzerland
Image Credit: McLurkin, MIT
Potential Solutions

• Onboard Power:
 – Batteries
 • Exchange Behaviors
 • Docking Behaviors
 – Alternative Sources
 • Hydrocarbon Fuels
 • Fuel Cells
 • Biomass Fuels

• Offboard Power
 – Tethers
 – Solar, Fields, Kinetic
Proposed Solution

Wireless, battery-less power
(Robots are RFID tags with wheels & sensors)

Ampere’s Law (coil):

\[H(x) = \frac{I \cdot N_i \cdot r^2}{2 \sqrt{(r^2 + x^2)^3}} \]

Faraday’s Law:

\[E = \mu_0 H \omega N_p A_p \]

Image Credit: Finkenzeller, "RFID Handbook"
Related Work

Other Inductive Wireless Power Systems

Multiple magnetic induction coils
- Mechanically complex
- Complex control scheme
- Can provide localization info
- Not easily tile-able

Multiple magnetic induction coils
- Mechanically complex
- MEMS and organic FETs
- Complex control scheme
- Can provide localization info
- Tile-able

Image Credit: Gao, Fraunhofer IBMT

Image Credit: Sekitani et al, University of Tokyo
Related Work

Nano-robots powered by fields

- Surface fields cause actuation of nano-actuator
- No logic or memory in the robot
- Better considered “distributed actuator”

NIST Image Credit: Craig McGray
System Design

- 112KHz operating frequency
- Single resonant transmitter coil in power surface
- Non-resonant receiving coil on each robot
- Magnetic flux coupling between transmitting and receiving coils
- Surface to robot coupling virtually unaffected by number of robots
- Mechanically and electrically simple
- Supports bidirectional communication
- Does not support localization
Resonance Considered

Advantage of Resonant Coils:
High Q increases circulating current in transmitting coil for given drive voltage - yields higher induced voltage in robot

\[H(x) = \frac{I N_t \cdot r^2}{2 \sqrt{(r^2 + x^2)^3}} \quad E = \mu_0 H \omega N_p A_p \]

Disadvantages of Resonant Coils:
High Q coils present manufacturing problems
Coupled resonant coils interact and de-tune each other
High Q resonances limit available bandwidth for communication

Tradeoff:
Use resonant transmitting coil under surface
Robots use non-resonant receiving coils
Robots interact with surface resonance, but not each other
Power Surface Design

Schematic

Underside of Prototype
(0.6m x 0.6m)

Primary

Resonant Secondary

L=740uH
C=2.7nF
F=112KHz
Robot Power Design

Logic Power High Priority
Motor Power Lower Priority

Schematic

Communications & Power Conditioning Board
Robot Prototype

Line-Following Application

PIC microcontroller
ESCAP DC gearmotors
IR line sensor array
IR Comm.
Coil
Communication

Surface-to-Robot

- 100% AM modulation
- Data rate 800bps, limited by coil Q of 125
Communication

Surface-to-Robot at 800 bps

Coil resonance limits rise time / data rate

Surface Field Amplitude-Modulated

Robot Filtered RX

Robot RX Data
Communication

Robot-to-Surface

- Load modulation by FET switch
- Data rate 20Kbps, 1% modulation depth
Communication

Robot-to-Surface at 20 kbps

Robot TX Data

Surface DEMOD input

Surface DEMOD output
Power Density

Measured Power (Watts) into simulated robot load (80 Ω) at various heights above surface

0 cm (on surface) 5 cm above surface

> 4.1mW/cm² average
Power Density

Measured Power (Watts) into simulated robot load (80 Ω) at various heights above surface

10 cm above surface

15 cm above surface
Robot-Robot Interaction

Non-Resonant Coils on Robots

Virtually no interaction between robot coils until they’re atop each other.

Overlapping coils interact

Non-overlapping = little interaction
System Efficiency

\[\eta_{\text{system}} \approx \frac{n \cdot 200\text{mW}}{12\text{W} + n \cdot 200\text{mW} \cdot \eta_{\text{coupling}}} \]

Small when robot coils are small compared to surface

- Surface quiescent draw is 12W to overcome losses in transmitting coil.
- Each robot recovers ~200mW
- Efficiency increases with # of robots
Summary

Benefits:
- Simple, Low Cost Construction
- Persistent Power to Large Number of Robots
- Bidirectional Communication
- Enabling Technology for Swarm Research

Future Work:
- Characterize Efficiency with Larger Number of Robots
- Improve Communication Bandwidth
- Develop Tiling Scheme
- Web Community for Interested Researchers
Questions?

Travis Deyle
Georgia Institute of Tech.
tdeyle@gatech.edu

Matt Reynolds
Duke University
matt.reynolds@duke.edu