P.W. Singer Wastes an Opportunity in the Atlantic

Peter W. Singer is arguably the most famous scholar of drones and robotic warfare today.  His book Wired for War probably did as much to introduce unmanned aircraft to the popular consciousness as any single work.  His article in the Atlantic on July 19th blew a huge opportunity to advance the discussion of unmanned aircraft regulation.  

Being Honest in Robot Videos: Motion Capture, Speedup Rates, and Teleoperation

KMEL nano quadrotor

Movies and scifi books inspire roboticists to push the envelope, but they've also skewed the public's perception of robot capabilities. This problem is being exacerbated by researchers.  In the last three months, I've had to shatter a few dreams: "Your $300 AR.Drone or $150 Ladybird will not be able to perform insane autonomous aerial maneuvers (yet). The UPenn quadrotors rely on $20k-$50k camera-based (Vicon) motion capture systems, which provide global pose estimation of each UAV at millimeter-accuracies at up to 1kHz (and often uses an external, centralized motion planning computer too)."  That this crucial aspect of the videos does not register with intelligent people means that researchers are being disingenuous and violating their duty to the public -- which sucks, because their projects and research are awesome!   And this is just the example that happens to be most salient to me at the moment.  In this post I'd like to explore some "best practices" for robot videos so that we can quit misleading one another.

East Coast Chauvinism in Robotics: Time to Face Facts, Silicon Valley is Kicking Our Butt

East coast vs. West coast

I have lots of love for Pittsburgh in particular, but it really pisses me off when people on the East Coast repeat a bunch of falsehoods (See #8) about how Boston and Pittsburgh compare to Silicon Valley and the rest of the world.  Many people in Pittsburgh and Boston—including people I call friends and mentors—smugly think that the MIT and CMU centered robotics clusters are leading the world in robotics.  This is demonstrably false.

Redwood Robotics: New Silicon Valley Startup by Meka Robotics, Willow Garage, and SRI

Redwood Robotics

Redwood Robotics came out of its year-long stealth mode at today's Xconomy event in Menlo Park, California.  Redwood Robotics is a joint venture between three west-coast robotics powerhouses: Meka Robotics, Willow Garage, and SRI.  Aaron Edsinger, who is CEO of Meka Robotics and is expected to take a leadership / executive role at Redwood, made the announcement and explained the startup's goal: "To enable the personal and service robot markets through a new generation of robot arms that are simple to program, inexpensive, and safe to operate alongside people."  In other words, they're teaming up to create a proper competitor to Heartland Robotics in Boston.  Unfortunately, that's all the public details that they're sharing at this time.  They're being tight-lipped about business and technical details given the amount of secrecy in this market (eg. Heartland is notoriously tight-lipped).  We'll try to keep you updated as we learn more.  In the meantime, check out the brief spotlights of the three joint partners below.

Artisan's Asylum: Hackerspace Startup Building a 2500+ lb. Rideable Hexapod Robot Named Stompy

Stompy Rideable Spider Robot

Artisan's Asylum is a hackerspace startup in Boston, MA that is hosting classes to build big, bad-ass robots.  Their first course set out to build 300-lb autonomous "vending machine robots."  That class is winding down, so they're starting a new project: a 2500+ lb. ridable hexapod "spider" robot named Stompy.  The robot will feature a propane engine generating 135 HP to hydraulically power six legs, and it will likely cost around $25k-$30k to build (versus $250k that would typically be involved in such an effort).  The guys teaching the class are professional roboticsts, having worked at Boston Dynamics, Barrett Technology, and DEKA.  So this is a serious endeavor!  They're following the same design methodologies that their (current and former) employers use to produce classics such as BigDog, AlphaDog, and PETMAN.  They're using the proceeds from the class to fund early development (a one leg cart), followed by a KickStarter project to fund the remainder of the robot (forthcoming announcement).  It's a clever way to fund a large robot hardware platform.  Conceivably, they could use the resulting robot to generate revenue to for the startup (rentals for promotional events, parades, or wedding processions!) and to bootstrap other robots.  Read on for details supplied by Artisan's CEO, Gui Cavalcanti.

Two More Robotics Companies Get Acquired: My Robot Nation and Sensable Technologies

My Robot Nation and Sensable Technologies recently acquired

It seems like robotics companies are being acquired left-and-right.  Just the other week we learned of two more: (1) My Robot Nation, which allows you to design and 3D print custom robot figurines, was acquired by 3D systems.  (2) Sensable Technologies, which is best-known in robotics circles for their "Phantom Omni" haptic interfaces (eg. for teleoperation), was just acquired by Geomagic.  While the acquisition prices were undisclosed, it's likely that they were smaller than the mega-acquisitions of Kiva Systems by Amazon for $775 Million and Aldebaran Robotics by Softbank for $100 Million.  Either way, these recent acquisitions seem to indicate a growing trend in the robotics industry -- that... or I'm just paying more active attention to the business-side of robotics.

Wireless Power Transfer to Ground Sensors Using a UAV (Quadrotor)

Quadrotor Wirelessly Powering a Sensor

We were scanning through the upcoming ICRA2012 program and noticed an interesting paper titled, "Resonant Wireless Power Transfer to Ground Sensors from a UAV."    This certainly piqued our interest -- especially for Travis, who happens to work with wirelessly-powered sensors at his day job.  Come to find out...  the article is by Dr. Carrick Detweiler, PI of the NIMBUS Lab at the University of Nebraska-Lincoln (our undergrad alma mater!).  Furthermore, he just provided a preprint of the paper (PDF) and a video on his website.  Score!  Their quadrotor delivers power via magnetic resonance (ie. WiTricity-style) to a load on the ground.  This same type of technology is being actively researched for lots of applications, including: consumer electronics, transportation (eg. electric vehicle recharging), and remote sensing (this application).  Adding it to a UAV adds a bit of flexibility to the system.   Anyway, be sure to check out the video below... and we'll also give a brief overview of a few different wireless power + robotics projects over the ages.

KATE: A New Humanoid Robot from FutureBots Labs

KATE Humanoid Robot from FutureBot Labs

As FutureBots Labs' solo roboticst, Dan Mathias has been toiling away for almost 10 years to develop humanoid robots (such as the ATOM-7XP humanoid) out of his lab.  Today Dan has a special announcement: FutureBot Labs has developed a new humanoid robot named KATE, the "Kids Avatar Teacher and Entertainer."  We're highlighting Dan's latest robot for three reasons:  First, FutureBots is trying to become a legit robotics business with real products for entertainment, education, research, and healthcare.  That's a tough nut to crack on a personal budget and as a solo engineer!  Hopefully a little exposure will help FutureBots find some much-needed assistance on a number of fronts.  Second, we are impressed with Dan's (solo!) engineering efforts over the years.  He's clearly a dedicated and capable roboticist.  Third, we've been unable to previously cover his robots' (seemingly-incremental) progress, so we're happy that KATE's unveiling gives us occasion to write about FutureBots Labs.  Be sure to check out the photos and videos of Dan's latest KATE robot, as well as the more mature ATOM robot.

Robotics and the Law: The New "We Robot" Conference

Robotics and the Law

Legal subtleties will naturally arise as robots become increasingly ubiquitous.   Hizook touched briefly on this topic back when we discussed ISO safety standards for robotics.  However, this topic deserves additional attention.  It's a touch-and-go issue:  It's important not to burden a burgeoning industry with premature regulations, but at the same time, accountability is a serious issue -- especially as robots enter our homes.  Creating a dialog between roboticists and legal professionals would clearly be a good thing.  Naturally, Hizook follows a number of blogs dedicated to the subject, including the aptly-named "Robotics and the Law" blog from Stanford Law.  But we're also happy to share an announcement from U.Miami Professor of Law, Michael Froomkin, who wrote in to tell us about the We Robot 2012 conference later this month.   The full details about the conference are below.  Basically, We Robot is billing itself as the "Inaugural Conference on Legal and Policy Issues Relating to Robotics," whose aim is to "create a conversation between people designing and building robots and the people thinking about the law and policy issues they create."

Exclusive Preview of Robotiq's New 2-Finger Adaptive Gripper -- Sponsor Spotlight

New 2-fingered Adaptive Gripper from RobotIQ

Hizook was first to cover the Robotiq's unique 3-fingered Adaptive Robot Gripper back in 2010, even before it became a commercially-available product. Since then, that gripper has been spotted on a number of robots, appeared in a TV commercial, and been used in numerous robotics research projects that needed a rugged and dexterous robot hand.  Today, we're happy to share the news that Robotiq has a new, upcoming product: a simplified, 2-fingered version of the Adaptive Gripper.  In the video below, we can see that this new design has some definite advantages over existing 2-finger parallel-jaw grippers... namely, the added ability to conformally wrap around objects for improved grasp configurations.  Oh, and it apparently has sufficient grip force to lift loads in excess of 10 lbs (that's pretty impressive!).

New DARPA Grand Challenge for Humanoid Robots -- Preliminary (Unofficial) Details

New DARPA Humanoid Grand Challenge

It seems we're going to have a new DARPA Grand Challenge!  The BAA with formal details should be out very soon, but for now we're bringing you the unofficial, preliminary details based on notes from Dr. Gill Pratt's talk at DTRA Industry Day: The new Grand Challenge is for a humanoid robot (with a bias toward bipedal designs) that can be used in rough terrain and for industrial disasters.  The robot will be required to maneuver into and drive an open-frame vehicle (eg. tractor), proceed to a building and dismount, ingress through a locked door using a key, traverse a 100 meter rubble-strewn hallway, climb a ladder, locate a leaking pipe and seal it by closing off a nearby valve, and then replace a faulty pump to resume normal operations -- all semi-autonomously with just "supervisory teleoperation."  That's a tough challenge, but it should be fun!  It looks like there will be six hardware teams to develop new robots, and twelve software teams using a common platform (PETMAN anyone?!).  The most crazy part about all of this: The United States is getting back into the humanoid robot game... in a big way!  Updated 4/10/2012 with official details!

Meka Robotics Introduces New Humanoid Legs and Tactile Skin -- Sponsor Spotlight

Hume humanoid robot from Meka Robotics

Meka Robotics is renowned for their humanoid robot, the M1 mobile manipulator with omnidirectional wheeled base.  However, Meka also has a number of joint collaborations with research labs that have resulted in some cool, new robotic technologies.  First up, Meka teamed up with Luis Sentis' Human Centered Robotics Lab at UT Austin to design and build a new legged biped, named Hume, for rough-terrain locomotion.  As you can see in the video below, Meka and Luis designed a high-speed, high-strength pair of robot legs that will (hopefully) be paired with a set of Meka's famous series-elastic arms (and thus give BDI's PetMan some healthy competition!).  Second, Meka teamed up with Mark Cutkosky from Stanford's Biomimetics and Dexterous Manipulation Lab to build upon Standord's tactile sensor technology.  They worked with Charlie Kemp's Healthcare Robotics Lab (at Georgia Tech) to develop the sensor into a tactile-sensing skin for Cody that is now being used to explore cutting-edge robot behaviors for tactile manipulation.  Check out the videos of the sensor below, and be on the lookout for cool "manipulation in clutter" videos from Charlie's lab in the coming weeks.   So... while Meka develops some great products, they can also work with you to make your robot concepts into beautifully-designed robot realities.

Breaking News: Amazon Acquires Kiva Systems for $775 Million in Cash

Kiva Systems robot warehouse fulfillment

Amazon.com just announced that it was acquiring Kiva Systems for $775 Million in cash.  Kiva Systems is one of my favorite "companies that employ robots" (rather than "robotics companies" -- there's a big difference).  Kiva is all about improving warehouse logistics and fulfillment, and they happen to employ a large swarm of robots (see video below) to accomplish this.  Namely, they use robots to autonomously fetch and arrange "pods" so that human pickers can more efficiently fill orders.  Their technology is exceedingly relevant in the modern age of large (internet) fulfillment centers.  Frankly, they're a perfect match for Amazon.  According to a November report, Boston-based Kiva Systems boasted revenues in excess of $100 Million, had 240 employees, was growing 130% year-over-year, and was a prime example of a venture capital-backed robotics outfit (having received $33 Million in total).  Honestly, this acquisition makes me sad... I would have liked to see Kiva go public.  Plus, I certainly hope Amazon doesn't hoard Kiva away for itself and rob the world of efficient, robotic warehouses...

RoboSquirrel vs Live Rattlesnakes: BioRobots Allow Researchers to Study Predator-Prey Interactions

RoboSquirrel is used to study interactions with rattlesnakes

Animal behavior scientists strive to understand why and how animals do the things they do. Up until recently, scientists had to rely on natural observations -- fortuitous encounters or staged interactions.  But advances in biorobots (mechanical robots that mimic live animals) are giving scientists unprecedented control over experimental variables, allowing them to run studies that would be unfeasible (or dangerous, or inhumane) in the course of normal research.  They have already proved valuable for testing various animal communication hypotheses: flocking, mate selection, and animal communication.  In this article, we examine new work by researchers from UC Davis and San Diego State University that pits a robotic squirrel, RoboSquirrel, against real-life rattlesnakes to study the subtleties of predator-prey interactions

Venture Capital (VC) Funding for Robotics in 2011

Venture Capital Funding

I've been tracking venture capital (VC) funding of robotics companies for the better part of two years.  Based on my (limited) data, VC funding in robotics exceeded $160 Million for 2011.  This is just a rounding error compared to VC funding of Internet (web-based) companies, which hit a decade-long high of $6.9 Billion in 2011.  My hope is that robotics will get more love in the next year(s), but getting VC funding for robotics is a decidedly tough nut to crack.  Robotics companies have large capital requirements for robot hardware, few potential acquirers, and almost no "Google-scale" breakout success stories (ie. IPOs).  I mean, c'mon... one of the best known robotics companies, iRobot, has a market cap of just $700 Million.  This makes robotics a difficult sell to your typical VC firm.  My hope is that this list can give others courage to pursue "swing for the fences" type projects along with a source for robotics-friendly VC firms.

Agile Justin: DLR's Rollin' Justin Gets a Younger, More Agile Brother -- Pair Combines to Play Catch

Agile Justin Humanoid Robot from DLR

I just received word from Berthold Bäuml, a lead scientist in realtime dynamic motion planning at DLR, that they've developed a new humanoid robot named "Agile Justin."  Agile Justin is very similar to Rollin' Justin (the ball-catching, Pulp Fiction-dancing robot), except that it has improved dynamic performance.   To test the new hardware, DLR researchers have programmed Agile Justin to throw a baseball.  Naturally, since Rollin' Justin is able to catch a baseball (see the DLR project page), researchers set up an impromptu game of "catch" between the two robots -- shown in a sneak peek video below.   It sounds like this new system is just ramping up and will be used to push the envelope in terms of full-body control: real-time coordination of hands, arms, torso, and mobile base for dynamic tasks.  I'm told that technical details should be forthcoming in academic publications later this year along with demonstrations at Automatica 2012.

TED Talks about Robots and Robotics (Part 1)

TED Logo

I'm a huge fan of TED Talks -- high production quality talks given by the world's thought leaders, recorded and distributed for all after the annual TED conference.  I've noticed that robotics is a perennial hot topic, so naturally I thought: "I should build a compendium of TED talks about robotics (all on one page)."  And so here it is... all 21 of the TED talks that have graced the TED.com frontpage to date.  But alas, TED has expanded beyond the confines of the annual (expensive!) conference.  There are now dozens of TEDx events (independently organized TED meetups) around the world, and robots are equally popular at these satellite events.  So... I guess this will just have to be turned into a series.  These videos should get you started.  Enjoy!

Introducing "Cubelets" by Modular Robotics: No Wires, No Code, Real Robots

Cubelets -- A modular robot construction kit by ModRobotics

There are many cool tech toys on the market... But Cubelets make building robots quick and fun.  Cubelets are a new robot construction kit from Modular Robotics.  Snap these small magnetic blocks together, and without further ado your robot starts to sense, plan, and act.  Your robot's behavior depends entirely on how you've assembled the Cubelets; behaviors emerge from the local interactions between  Sense, Think, and Action Blocks -- no single “brain” block and no single “program” controls the robot.  For example, a Light Sense Block atop a Drive Action Block makes a light-fearing robot.  Turn the Drive Action Block around and it’s a light-lover.  The KT06 kit, launching next week at CES in Las Vegas, gets you started with six blocks; meanwhile, the KT01 kit includes a full gamut of Sense, Think, and Action Blocks.  Cubelets are great for little kids; they can build their first robot in seconds, but big kids (adults) find Cubelets just as much fun too. This Cubelets video (below) shows how it works.

JamBots: Soft Robots Based on Particle Jamming, Like this Hexapod from iRobot

JamBot: A hexapod robot based on particle jamming

iRobot has received ample attention for their particle jamming innovations (ie, the "Jamming Blob Robot" and "Jamming Gripper"), created under the now-expired DARPA Chembot program.  However, if you're like me, their particle jamming actuators and hexapod "JamBot" probably alluded your attention -- and they're stinkin' cool!  That said, I'd like to introduce you to the "Hexapod JamBot" and the "Jamming Modulated Unimorph (JMU) actuator" created by researchers at iRobot and the Jaeger Group at the University of Chicago.

Inflatable Robots by Otherlab: A Walking Robot (named Ant-Roach) and a Complete Arm (Plus Hand)

Inflatable Robot

I'm really excited about inflatable robots... they have the potential to be low-cost, lightweight, extremely powerful, and yet "human safe" -- ie. perfect for many robotics applications.  With that in mind, I would like to introduce you to two new (breakout) inflatable robots: a 15-foot-long walking robot (a Pneubot named Ant-Roach) and a complete, inflatable robot arm (plus hand).  Both of these robots were developed by Otherlab as part of their "pneubotics" project (in collaboration with Meka Robotics and Manu Prakash at Stanford University), with some funding from DARPA's Maximum Mobility and Manipulation (M3) program.    These robots use textile-based, inflatable actuators that contract upon inflation into specially-designed shapes to effect motion.   Since these robots are built out of lightweight fabric-and-air structural members and powered via pneumatics or hydraulics, they exhibit large strength-to-weight ratios.  For example, Ant-Roach is less than 70 lbs and can probably support up to 1000 lbs; the inflatable robot arm is less than 2 lbs and can lift a few hundred pounds at 50-60 psi.  Be sure to read on for details and lots of videos!

Impact Factors for Robotics Journals

Impact factors for robotics journals

This article is specifically for folks in academia... When writing a journal paper, targeting the right venue is an important consideration.  There are lots of factors that go into this decision: audience, prestige, historical topics of interest, turn-around time, open access, etc. Discussing all the considerations in detail is too taxing and is probably not actionable (it's too dependent on your research and goals). But I thought I'd share... I'm tracking the Institute for Scientific Information (ISI) impact factors for various robotics journals.  In very general terms, the impact factors can give you a rough approximation of journal quality and help you target your publications.  You can find a historical plot of robotics journals' impact factors (along with the latest values) below.  I'll try to keep these up to date.

New Soft Robots Use Electropermanent (EP) Magnet Valves and Hydrogen Peroxide "Pneumatic Battery"

New Soft Robot Uses Electropermanent (EP) Magnet Valves and a Pneumatic Battery

I would like to introduce you to a new "elastomeric rolling robot" -- a soft robot made of inflatable, silicone actuators that pressurize in sequence to make the robot move.  This new robot hails from MIT's Distributed Robotics Laboratory and has a major distinguishing feature compared to other soft robots: it is entirely self-contained -- no more off-board electronics or pneumatics; everything is on-board. Two technologies facilitated this new robot:  (1) A "pneumatic battery" that uses mechanical feedback to self-regulate a chemical (hydrogen peroxide) reaction and maintain a stable pressure inside the robot's on-board pressure vessel.  (2) An energy-efficient pneumatic valve design based on electropermanent magnets (one of my favorite topics!).  These two new technologies were just presented at recent robotics conferences (ISRR 2011 and IROS 2011).  Be sure to check out the video below.

Infrared Remote Controlled (RC) Steerable Vibrobot Created by Naghi Sotoudeh

Remote Controlled (RC) Vibrobot

Vibrobots (and bristlebots) are simple robots that use a tiny pager / cellphone vibrator motor (with an eccentric weight) to randomly bounce around -- they are the subject of many Maker / DIY projects as well as some well-known commercial toys (such as the $7.00 Hexbug Nano).  Naghi Sotoudeh, a Hizook reader from Iran, contacted us about his latest project: a remote controlled micro-scale vibrobot (measuring just 18 x 12 x 10 mm) that uses two vibrator motors to achieve steerable motion without any wheels.  Naghi's design is similar to some previous steerable vibrobots (eg. the Harvard Kilobot project), but the vibrator motor arrangement gives his design a nice, distinctive faux-wheel look.  The hardware is fairly simple: a small PCB, two vibrator motors, a microcontroller, an infrared photodiode, and a very small battery.  In general, the software for this type of robot isn't too bad either.  In short, this could be a great DIY project and potentially a nice mass-market product.  What do you think...  Would you fork over your hard-earned money for a RC vibrobot kit or pre-built RC vibrobot? 

Brian Gerkey and Pieter Abbeel Win Prestigious "MIT Tech Review 2011 Young Innovators Under 35 Award" (TR35)

TR35 Logo

It's that time of year again... MIT Technology Review announced their 2011 "Young Innovators Under 35" Awards (TR35).  This year two roboticists are among the recipients: Brian Gerkey and Pieter Abbeel.  Brian Gerkey is currently the "Director of Open Source Development" at Willow Garage, where he architects ROS (the Robot Operating System).  ROS is quickly becoming the world's standard robot software platform, supplanting Player --which was also developed by Brian.  Pieter Abbeel, a professor at UC Berkeley, has done some cool stuff with the PR2 (eg. towel folding) as well as really nice machine learning work on autonomous helicopter acrobatics.  Now we can add Brian and Pieter to the ranks of past TR35 robotics recipients: Aaron Dollar (2010)Andrea Thomaz (2009), Andrew Ng (2008), Robert Wood (2008), Josh Bongard (2007).  I'm noticing a nice trend... Hopefully TR35's love for robotics continues.

Swarmanoids: Foot-Bots, Hand-Bots, and Eye-Bots Cooperate to Win "Best Video" at AAAI 2011

Swarmanoid System: Hand-Bots, Foot-Bots, and Eye-Bots

The Swarmanoid project is a cool twist on swarm robotics -- researchers use a heterogeneous swarm of robots to achieve distributed mobile manipulation. The swarm is comprised of three different robot varieties: Hand-Bots (manipulation and climbing), Foot-Bots (wheeled mobility and sensing), and Eye-Bots (quadrotors for recon and sensing).   The latest video of Swarmanoid retrieving a book won the "Best Video Award" at the Artificial Intelligence Conference (AAAI 2011) in San Francisco just the other day.  You can check out the robots and winning video below.

Syndicate content